Student Number:
Dept. of Mechatronics Engineering
Mid Exam, First Semester: 2013/2014

Course Title: Advanced Engineering Mathematics
Course No: (640711) - Msc. Course
Lecturer: Dr. Mohammed Mahdi

Date: 5/12/2013
Time Allowed: 1.5 Hour
No. of Pages: 2

Question 1:

Objectives: This question is about the basic concepts of Laplace and z transforms. Evaluate the following using Laplace and z transforms formulas: -

- Laplace transform of $t^{3} e^{-3 t}$
- Laplace inverse of $\frac{1}{s\left(s^{2}+1\right)}$
- Prove that Laplace inverse of $\mathrm{F}(\mathrm{s}-\mathrm{a})$ is $e^{a t} f(t)$
- Prove that $z\{t\}=\frac{T z}{(z-1)^{2}}$

Question 2:

Objectives: This question is about Laplace inverse and solving differential equations using Laplace transform.
A) For $F(s)=\frac{(2 s-7)}{\left(s^{2}+25\right)}$, it requires to find: -

- Its related controllable canonical state space representation matrices.
(5 Marks)
- Its related diagonal state space representation matrices.
- f(t) using Laplace inverse properties.
B) Solve $y+9 y=18 t$ with $y(0)=0, \dot{y}(0)=6$.
(10 Marks)
C) Given $\ddot{y}-6 y=g(t)$, with $y(0)=\dot{y}(0)=0$, and $g(\mathrm{t})=\left\{\begin{array}{cc}0 & t \prec \pi \\ \sin (t-\pi) & t \geq \pi\end{array}\right\}$, it is required to show $y(s)$ in factorized form.
(10 Marks)

Question 3:

Objectives: This question is about the solution of state space representation mathematical model.
A) Given $\ddot{y}+2 \dot{y}+y=x$. It is required to find the matrix exponential ($e^{A t}$) using Cayley-Hamilton theorem.
(10 Marks)
B) For a system with $\mathrm{A}=\left[\begin{array}{cc}0 & 1 \\ -6 & -5\end{array}\right], \mathrm{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathrm{C}=\left[\begin{array}{ll}0 & 1\end{array}\right]$, and $\mathrm{D}=0$. The matrix exponential $\left(e^{A t}\right)$ is found to be $\left[\begin{array}{cc}3 e^{-2 t}-2 e^{-3 t} & e^{-2 t}-e^{-3 t} \\ -6 e^{-2 t}+6 e^{-3 t} & -2 e^{-2 t}+3 e^{-3 t}\end{array}\right]$. It is required to find:-

- System transfer function.
- Initial and final values for unit impulse change in input. Discuss your results.
- Output response $y(t)$ to a unit impulse with zero initial conditions using the given state space representation.

Good Luck

