Philadelphia University

Student Name:

Student Number:

Faculty of Engineering

Dept. of Mechatronics Engineering

Mid Exam, First Semester: 2013/2014

Course Title: Advanced Engineering Mathematics	Date: 5/12/2013
Course No: (640711) – Msc. Course	Time Allowed: 1.5 Hour
Lecturer: Dr. Mohammed Mahdi	No. of Pages: 2

Question 1:

Objectives: This question is about the basic concepts of Laplace and z transforms.

Evaluate the following using Laplace and z transforms formulas: -

- Laplace transform of $t^3 e^{-3t}$ (5 Marks)

- Laplace inverse of
$$\frac{1}{s (s^2 + 1)}$$
 (5 Marks)

- Prove that Laplace inverse of F(s-a) is $e^{at} f(t)$ (5 Marks)

- Prove that
$$z{t} = \frac{Tz}{(z-1)^2}$$
 (5 Marks)

Question 2:

Objectives: This question is about Laplace inverse and solving differential equations using Laplace transform.

A) For
$$F(s) = \frac{(2s-7)}{(s^2+25)}$$
, it requires to find: -
- Its related controllable canonical state space representation matrices.
- Its related diagonal state space representation matrices.
(10 marks)
- f (t) using Laplace inverse properties.
(5 Marks)

B) Solve
$$y + 9 y = 18 t$$
 with y (0) =0, $y(0) = 6$. (10 Marks)

C) Given
$$y - 6y = g(t)$$
, with $y(0) = y(0) = 0$, and $g(t) = \begin{cases} 0 & t < \pi \\ \sin(t - \pi) & t \ge \pi \end{cases}$, it is required to show y(s) in factorized form. (10 Marks)

1

(40 Marks)

(20 Marks)

Question 3:

(40 Marks)

Objectives: This question is about the solution of state space representation mathematical model.

- A) Given y+2y+y=x. It is required to find the matrix exponential (e^{At}) using Cayley-Hamilton theorem. (10 Marks)
- **B)** For a system with $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$, and D = 0. The matrix exponential (e^{At}) is found to be $\begin{bmatrix} 3e^{-2t} 2e^{-3t} & e^{-2t} e^{-3t} \\ -6e^{-2t} + 6e^{-3t} & -2e^{-2t} + 3e^{-3t} \end{bmatrix}$. It is required

to find:-

- System transfer function. (10 Marks)
- Initial and final values for unit impulse change in input. <u>Discuss your</u> results. (10 Marks)
- Output response y (t) to a unit impulse with zero initial conditions using the given state space representation. (10 Marks)

Good Luck